

Adapting Complex Image Processing Algorithms to
Mobile Devices

A Thesis Presented to

The Faculty of the Computer Science Program

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

By

Justin Stein

2011

Master Thesis by Justin Stein

2

© 2011

Justin Stein
ALL RIGHTS RESERVED

Master Thesis by Justin Stein

3

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

__

Advisor: Dr. Andrzej Bieszczad Date

__

Dr. Richard A Wasniowski Date

__

Dr. Peter Smith Date

APPROVED FOR THE UNIVERSITY

__

Dr. Gary A. Berg Date

Master Thesis by Justin Stein

4

Proving It Can Be Done:
From Desktop Application to Mobile Application with CrazZzy Filterz

By

Justin Stein

Computer Science Program

California State University Channel Islands

Master Thesis by Justin Stein

5

Abstract

Mobile devices have come a long way since the earlier times. Cell phones were once only used
for making and receiving telephone calls but now are transforming into small personal computers
capable of running standalone programs or applications. Consumers are now regarding their
mobile device as a portable personal computers. According to the US Smartphone Statistics of
Quarter 1 of 2011, Smartphones made up 54% of all mobile phone sales in the US. As of March
2011, the majority of the platforms in which Smartphones run on consist of the Android OS, the
Apple iOS, and the RIM BlackBerry OS. The Android OS holds about a 37% share, Apple iOS
has about a 27% share and the RIM BlackBerry OS has a 22% share of the market. For this
thesis I’m going to demonstrate the evolution of software from a very powerful hardware system
such as a desktop computer to be used on this new evolving market of less powerful hardware
found on mobile devices through an application I developed for the Android OS called CrazZzy
FilterZ.

Even with the advancements of hardware there is still a gap between mobile devices and home
computers. Programs that require high computing power to run will not run on mobile devices if
it cannot provide the necessary power to do so. Due to this, programs are modified to work with
fewer resources that are available to them. These programs end up trading some of their essence,
anything from functionality to appearance. The developer has to balance these tradeoffs to a
point to keep the end user happy and satisfied.

CrazZzy FilterZ will show some of the different methods to achieve a mobile application version
of a desktop program that uses an enormous amount of computing power and is unsuited for use
by mobile devices. CrazZzy FilterZ is a program that deals with the manipulating of the bitmap
data of images and sharing between members of a community of developers of these image
filters.

Master Thesis by Justin Stein

6

Acknowledgements

I would like to thank all those who have made this possible for me to achieve my goal. I would
also like to give a very special thanks to all of my loved ones who supported me throughout my
journey up to now. This is just the end of one chapter with many more to come in this book
titled “My Life”.

Master Thesis by Justin Stein

7

Table of Contents
	

CHAPTER	
 1:	
 INTRODUCTION	
 9	

1.1	
 INTRODUCTION	
 TO	
 “TRICKS”	
 9	

1.2	
 INTRODUCTION	
 INTO	
 DIGITAL	
 IMAGES	
 10	

1.3	
 INTRODUCTION	
 AND	
 EXPECTATIONS	
 OF	
 A	
 MOBILE	
 APPLICATION	
 10	

1.4	
 INTRODUCTION	
 TO	
 ADOBE®	
 AIR®	
 AND	
 ADOBE®	
 PIXEL	
 BENDER®	
 10	

1.5	
 INTRODUCTION	
 TO	
 CRAZZZY	
 FILTERZ	
 11	

CHAPTER	
 2:	
 FIELD	
 OVERVIEW	
 12	

2.1	
 IMAGE	
 PROCESSING	
 12	

2.2	
 IMAGE	
 RESIZING	
 15	

2.3	
 LOOK-­‐UP	
 TABLES	
 19	

CHAPTER	
 3:	
 TECHNICAL	
 DETAILS	
 OF	
 THE	
 WORK	
 22	

3.1	
 CRAZZZY	
 FILTERZ	
 22	

3.2	
 LOOK-­‐UP	
 TABLE	
 FILTER	
 33	

3.3	
 RESIZING	
 IMAGES	
 USING	
 BILINEAR	
 SCALING	
 37	

3.4	
 CONTROLLING	
 THE	
 ORIENTATION	
 39	

3.5	
 INTEGRATION	
 41	

CHAPTER	
 4:	
 EXPERIMENTS	
 42	

4.1	
 TESTING	
 ENVIRONMENT	
 42	

4.2	
 TESTING	
 THE	
 DIFFERENT	
 LANGUAGES	
 42	

4.3	
 TESTING	
 SPEED	
 AND	
 ACCURACY	
 46	

4.4	
 USING	
 THE	
 LUT	
 49	

CHAPTER	
 5:	
 ANALYSIS	
 OF	
 RESULTS	
 52	

5.1	
 NATIVE	
 ANDROID	
 IS	
 FASTER	
 THAN	
 ACTIONSCRIPT	
 3.0	
 52	

5.2	
 SMALLER	
 IS	
 BETTER	
 52	

5.3	
 USING	
 THE	
 LOOK-­‐UP	
 TABLE	
 53	

CHAPTER	
 6:	
 CONCLUSIONS	
 54	

CHAPTER	
 7:	
 FUTURE	
 WORK	
 55	

Master Thesis by Justin Stein

8

TABLE OF FIGURES
Figure 1.	
 Digital image’s matrix of numbers that represents the value of each pixel. 13	

Figure 2.	
 Image filtering Process – Example: Invert Filter 14	

Figure 3.	
 Linear Interpolation 15	

Figure 4.	
 Bilinear Interpolation for pixels between rows: 20, 21 and column: 15, 16 17	

Figure 5.	
 Examples: Resizing by Nearest-Neighbor, Bilinear, and Bicubic Interpolation 18	

Figure 6.	
 Graph: Look-up Tables - Normal, Invert, and Brightness 20	

Figure 7.	
 Graph: Look-up Tables: Contrast, Curves, and Threshold 21	

Figure 8.	
 CrazZzy Filterz, when it is first launched 22	

Figure 9.	
 Main Display Screen 23	

Figure 10.	
 Opened main menu 24	

Figure 11.	
 Selection of an image 25	

Figure 12.	
 All Filter Screen 26	

Figure 13.	
 Application displaying the Filters Window Menu Options. 27	

Figure 14.	
 Loading a new filter 28	

Figure 15.	
 Deleting a filter 29	

Figure 16.	
 Main displayed image with a filter applied to it 30	

Figure 17.	
 Parameter Panel showing the description along with the parameters 31	

Figure 18.	
 Pop up window used to modify a parameter of a filter. 32	

Figure 19.	
 Change in value is reflected in a small pop-up above the slider 33	

Figure 20.	
 The LUT Image 34	

Figure 21.	
 The Look-up Table Walkthrough 36	

Figure 22.	
 Data Chart: Lapse Times of Invert Filter – Android vs ActionScript 3 44	

Figure 23.	
 Graph: Lapsed Times of Invert Filter- Android vs. ActionScript 45	

Figure 24.	
 Data Chart: Lapse Times of Invert Filter – Original Sized vs. Resized 47	

Figure 25.	
 Graph: Lapse Times of Invert Filter – Original Sized vs. Resized 47	

Figure 26.	
 Picture Quality Test: Original Size vs. resized 48	

Figure 27.	
 Graph: Histogram Comparsion – Original Size vs. Resized 49	

Figure 28.	
 Data Chart: Invert Filter – Bitmap vs. LUT 50	

Figure 29.	
 Data Chart: Color Curves Filter – Bitmap vs. LUT 51	

Figure 30.	
 Data Graph: Invert and Color Curves Filters – Bitmap vs. LUT 51	

Master Thesis by Justin Stein

9

Chapter 1: Introduction
1.1 Introduction to “Tricks”
This thesis was about the miniaturizing of hardware and the tuning of the software that must
follow. In this age of technology, hardware is becoming smaller, faster, and cheaper for the
consumer. The wave of breakthroughs in hardware have allowed for computers of the size of
desktops to be the size of a cell phone with the same amount of processing power. The trend
today is to compact hardware into much smaller sizes and to continue to improve on its
performance. The general rule of thumb is still that computers will have far better performance
than cell phones, but now the gap between the two seems to be much smaller.
Developers throughout history have developed “tricks”, to achieve the most out of their
hardware, seemingly producing far better performance of an application than it can really
manage. An example of this is in a three dimensional game world, where developers will trick
the viewer into seeing more details on 3D models than is possible due to the sheer volume of
calculations that would be needed to move each and every vertex that these models would
contain if every depth on their surfaces was created. To avoid this large amount of calculations
which in turn means slowing of the game play of any game using this 3D world, the models are
designed with the least possible amount of vertices to define its shape and then are wrapped in a
texture or bitmap that contains the required amount of detail instead. This technique gives these
models great amount of detail when seen from a far but when viewed from a close the models
reveals that their faces have no actual depth to them.

While creating an application, the developer must think of the end users and their experience
while using it. While developing a new application, there will be times when the developer must
consider what limitations their application has or will have and must weigh the pros and cons of
alternative ways that they may want to take to achieve the same result. If we take a look back at
the previous example of 3D models wrapped with a texture, the developer must first weigh the
pros and cons of the different ways that are available to him to achieve the same result. The pros
for adding a texture and limiting the amount of vertices contained in the model will increase the
frame rates but the model’s overall detail up-close is dramatically decreased. The decision to go
a certain way is then based upon what exactly the developer is trying to accomplish in their
application. For a First Person Shooter video game, the end user requires the application to be
responsive and most times they are not too concerned with how detailed things looks and don’t
have much time to sight-see versus an adventure game in which an end user may want to check
out their surroundings more thoroughly. In either case, there is the tradeoff and to create a good
application the developer needs to conclude what is acceptable.

Master Thesis by Justin Stein

10

1.2 Introduction into Digital Images
Images consist of pixels arranged into columns and rows of a grid. Each pixel is a color and a
computer represents each pixel by a number that is equal to that color. A pixel consists of three
colors; Red Green and Blue, along with a value for intensity. The values for each color and
intensity are represented by that number. When a program does any image processing, it works
with that number of each pixel. When manipulating an image, an algorithm is performed on
each one of the pixels, for example a 3.2 megabyte image has 1600x2000 pixels that are needed
to be computed for any filter to run on to the entire image.

1.3 Introduction and Expectations of a Mobile Application
A mobile device is a device that is portable and independent. It can be use without the limitation
of a static power source or structure where it would prevent mobility. A mobile application is
any program that can be used on that device.
There are some expectations that users have formed from using mobile applications. The most
common expectation is that a mobile application will have are two different viewing layouts.
Devices are not normally square but instead are rectangular so, at any given time the display
screen of the device will have different sizes for either its height or width. Users expect an
application to display a different layout according to the device’s orientation.

Another expectation is to have commonalities between mobile applications. When users use a
new mobile application they do not want to have to re-learn how a mobile application should
react when they perform a certain action. An example of this is when the back button is pressed
and users are excepting the application to take a step back to the previous screen or state in
which that application was in. Users also expect a menu to appear when the menu button is
pressed.

1.4 Introduction to Adobe® AIR® and Adobe® Pixel Bender®
Adobe AIR is a product from Adobe. It is a runtime that enables developers to use HTML,
JavaScript, Adobe Flash® Professional software, and ActionScript® to build web applications
that run as standalone client applications without the constraints of a browser.
(www.adobe.com/products/air/)
 There are an abundance of Operating Systems that will run Adobe AIR, one of them is the
Google’s® Android®. This is only possible in 2.2 or later versions of Android.
Adobe Pixel Bender technology delivers a common image and video processing infrastructure
which provides automatic runtime optimization on heterogeneous hardware.
(http://www.adobe.com/devnet/pixelbender.html)

Users of Pixel Bender can develop image processing algorithms for use in filters or effects.
These filters can be intergraded into other Adobe product including Adobe AIR. These users
post their created filters to the Pixel Bender Exchange,
http://www.adobe.com/cfusion/exchange/index.cfm?event=productHome&exc=26&loc=en_us,
to be shared with any other user in the community.

Master Thesis by Justin Stein

11

CrazZzy Filterz uses these two technologies to create an application that is dynamic and
seemingly powerful on a mobile device where it was only thought of being available on a
desktop computer. CrazZzy Filterz is built on Adobe Air because there is an ActionScript 3.0
SDK which provided the ability to load, use and gain access to the parameters of the Pixel
Bender developed filters.

1.5 Introduction to CrazZzy Filterz
CrazZzy Filterz allowed for Adobe Pixel Bender’s Filters to manipulate images on a mobile
device. With this application the end user was able to load an image, save the image, add new
available filters, delete already loaded filters, and change the values of all the parameters of any
of the loaded filters.
The idea behind CrazZzy Filterz was to bring this already formed community of Pixel Bender
developers to the mobile device community of users. With CrazZzy Filterz the user can load
Pixel Bender filters that have already been created by the community or even some created by
the user, in turn utilizing the already vast amount of created filters of the Pixel Bender
Community.

CrazZzy Filterz has proven to be efficient and feasible as an AIR based application on a mobile
device. CrazZzy Filterz has techniques in place to achieve a successful mobile application that
can perform the necessary heavy computing required by an image filtering application. It also
presented all the expectations that a mobile device user may have formed from previous
interactions with other mobile applications.
CrazZzy Filterz reduced the amount of pixels in an image without lowering the image quality
and decreased the potential lapse time needed for the user to apply a new filter to the image.
CrazZzy Filterz also created and used a Look-up Table when it was displaying an image. It used
the Look-up Table to decrease the lapse time that a filter needs to be applied to the image.
CrazZzy Filterz interacted with the mobile device like a native application would. It responded
when both the mobile device’s hard menu and back buttons were pressed. CrazZzy Filterz also
changed its layout according to the orientation of the mobile device.

Master Thesis by Justin Stein

12

Chapter 2: Field Overview
There are a lot of different techniques that could have been used to achieve the goal of creating a
high resource hog desktop application’s counterpart that ran on a mobile device. First is the need
to speed up the time that a filter would have to take to run on an image and the best and most
effective way to achieve that is to reduce the size of the image. There are a few ways to go about
resizing an image. Some of the most used methods are the Nearest-neighbor Interpolation, the
Linear or Bilinear Interpolation, and the Bicubic Interpolation.

Another method that is used to speed up the time that a filter is required to run completely upon
an image is to use a Look-up Table. There are other perks that are available to a developer when
they run a filter upon the Look-up Table of an image such as never losing any of the original
image pixel data of the Digital Image.

The last bit of methods are used to create the features of a mobile application that users have
come to expect such as the need for the application to have two different layouts, one used when
the device is in Landscape mode and one when the device is in Portrait. A few other features that
are required by an end user would be the integration of the application with the mobile device
and commonality of the application with all the other native application on the mobile device.
CrazZzy Filterz combines all of these methods to achieve an accepted performance level along
with the expectations of a mobile device application compared to its desktop counterpart.

2.1 Image Processing
Images consist of pixels arranged into columns and rows of a grid. Each pixel has a color.
Digital images have an internal representation of the value of each pixel as a simple matrix of
numbers (Figure 1). This matrix of values is the data that is converted in to a visible image on a
screen. Any altering of the data in this matrix would directly result in a change in visible
appearance of an image. Typically, the matrix is the same size of the amount of individual pixels
in the image but through the compression of saving a digital image using different techniques
they will vary.

Master Thesis by Justin Stein

13

Figure 1. Digital image’s matrix of numbers that represents the value of each pixel.

Master Thesis by Justin Stein

14

Image Processing refers to the analysis and manipulation of a digital image. This process usually
intends for an algorithm to be run on the digital image’s data. When an algorithm is run though
all the pixels of an image, the algorithm is continually repeated for all the values in the image’s
data matrix. This algorithm can be used to return a new value in place of the current pixel’s
value, creating a new image from the data of the old one. This type of manipulation is called
Image Filtering and a filter is just an algorithm that is run upon the pixels (Figure 2).

Figure 2. Image filtering Process – Example: Invert Filter

CrazZzy Filterz reduces the amount of values in an image’s data matrix and in some cases
utilizes the Look-up Table of digital images to lower the total amount of times that an image
processing algorithm needs to be run to lower the overall amount of computing time that a filter
may require to finish. This helped tremendously with the overall user satisfaction of the mobile
application.

Master Thesis by Justin Stein

15

2.2 Image resizing
As mentioned before the most effective way to speed up the computing time of a filter is to lower
the amount of times that the algorithm must run. To have the filter run on an image, the filter’s
algorithm must run on each pixel’s data of the image hence by lowering the amount of pixels, the
developer lowers the amount of times that the algorithm must run and that lowers the lapse time
of applying the filter to an image.
When scaling a Digital Image, a new Digital Image is created at a different size. When creating
the values of each of the pixels of the new scaled image, developers use Interpolation.
Interpolation is a method to approximate new data points within the range of a set of known data
points. Interpolation is used to find the value of some non-given point in some space when given
the values of the other points around that space. In the case of resizing images the known data
points are the pixel’s values and their locations according to the original image.
The Nearest-neighbor Interpolation is the easiest way of scaling an image. The Nearest-neighbor
Algorithm is simplest and fastest compared to the other algorithms. The algorithm selects the
value of the nearest point and does not consider any of the other neighboring points. Due to this,
the resulting image becomes pixilated and distinguishable from the original image.
Linear and Bilinear Interpolation are far better at preserving the smoothness of the edges of an
image. Linear Interpolation is a form of curve fitting, where the value of an unknown point is
calculated by the values of the two nearest known points. The Linear Interpolation Algorithm
reveals a straight line between two point’s values. The equation to find an unknown point’s
value between two already known point’s values is:

() ()
01

0010
0 xx

yxxyxx
yy

−

−−−
+= , where the coordinates of the known points are ()00 , yx and

()11, yx (Figure 3).

Figure 3. Linear Interpolation

Master Thesis by Justin Stein

16

The Bilinear Interpolation Algorithm is basically an extension of the Linear Interpolation
Algorithm and is used to find a value of a unknown point upon a 2D plane. Bilinear
Interpolation uses the values of the 2x2 neighborhood of known pixel’s values surrounding the
unknown pixel’s location to calculate a weighed value for the unknown pixel’s value (Figure 4).
The Algorithm runs a Linear Interpolation Algorithm to calculate the values of the points of the
two rows above and below of the unknown pixel’s position and a last time to calculate the
unknown pixel’s value by Linear Interpolation between the two previous found values. This
Interpolation is used by CrazZzy Filterz because of the quality of the resulting image and the
speed of the algorithm.

Master Thesis by Justin Stein

17

Figure 4. Bilinear Interpolation for pixels between rows: 20, 21 and column: 15, 16

Master Thesis by Justin Stein

18

Bicubic Interpolation is the slowest Interpolation Algorithm compared to the other ones that I
mentioned but it produces a smoother resulting image with less interpolation artifacts or errors.
Bicubic Interpolation is used in resizing an image when speed is not an issue.

Figure 5. Examples: Resizing by Nearest-Neighbor, Bilinear, and Bicubic Interpolation

Master Thesis by Justin Stein

19

2.3 Look-up Tables
A Look-up Table (LUT) is imposed on the data of an image before the image is displayed on to a
computer monitor. The LUT maps the image intensity values to brightness values. There are
two forms of a LUT that an image can be processed by. The first one is a set of values that run
between 0 to 255 and each pixel’s intensity values is mapped to a location on the LUT. Each
pixel data becomes an index in which to look up a pixel’s intensity on the array of value. The
second way is to pass each pixel value through an equation on the fly that alters the brightness
value of each pixel.
When the LUT is a linear equation with a slope of 1 with a 0 intercept, the displayed image is an
exact representation of the underlying image data (Figure 6). A pixel that is with the absolute
black color has 0 intensity will be mapped by the LUT as a pixel with 0 brightness. By simply
manipulations of the equation of the LUT, one can create many different visual effects from the
image’s data.

One of the most common examples of using LUT manipulation on an image is to control the
brightness and the contrast of each pixel. The equation of the LUT is in the form of a linear
equation with different intercepts:
 New intercept = slope * intensity + y-intercept, intensity is the level of brightness
and is between 0 and 1.
When manipulating the brightness of an image, the slope of the equation is a constant 1 but the
intercept has changed. When the intercept is less than 0 the displayed image is darken and when
the intercept is greater than 0, the displayed image is lighten (Figure 6).

To manipulate the contrast of an image, this equation is changed where the intercept equals:

 ()slope−1
2
1 .

The contrast is increased as slope increases and the intercept decreases. This is the opposite
when the contrast of the displayed image is lowered. The displayed image’s pixels’ intensities
are inverted, black is mapped to white and vice visa, when the slope of this equation is -1 and the
intercept is 1 (Figure 7).
When the smallest image’s pixel intensity value is mapped to absolute black and the largest
intensity value is mapped to absolute white, is called Autoscaling. This is usually the quickest
way to create the best contrasting without creating any saturation of white or black. One issue
with this is that outlier pixels intensity values will cause a low-contrast image. To counteract
this, the max and min values are mapped to the ends of the main body of 98% of the image data.

All of these examples and more (Figures 6, 7) alter the appearance of an image by simply
manipulating the Look-up Table. Such manipulation leaves the image content intact so they are
completely invertible. A feature of CrazZzy Filterz is to allow a developer to run a filter that
only needs to manipulate the Look-up Table of the image to achieve the filter’s results, rather
than having to running the filter directly on the image content.

Master Thesis by Justin Stein

20

Figure 6. Graph: Look-up Tables - Normal, Invert, and Brightness

Master Thesis by Justin Stein

21

Figure 7. Graph: Look-up Tables: Contrast, Curves, and Threshold

Master Thesis by Justin Stein

22

Chapter 3: Technical details of the work
3.1 CrazZzy Filterz
Launching CrazZzy Filterz for that first time presents the user with a little information about it.
The title is aligned on top of a red button bar located to the top or to the left depending on the
orientation of the device. A transparent black background hides the default application’s title art
image and the main functionality of the application. The information about CrazZzy Filterz is
written on top in white font (Figure 8). This screen slides to the opposite end to the device by
pushing on the CrazZzy Filterz title with a finger and sliding it towards the opposite end.

Figure 8. CrazZzy Filterz, when it is first launched

Master Thesis by Justin Stein

23

Once the screen has slid to the opposite end of the device, the default application’s art image
comes in to focus. This is CrazZzy Filterz main application’s screen. The default image sits on
top a solid black background along with three buttons. The two outer buttons have circle arrows
designed on them, but rotating in opposite directions. These buttons are used to rotate the image
clockwise or counter-clockwise. The middle button with a design of a pointing hand over a 2 by
2 grid is used to display all the available filters to the user (Figure 9).

Figure 9. Main Display Screen

The mobile device’s hard menu button is used to activate a menu screen which slides open from
the top or left of the screen. When this menu is opened, two buttons are revealed. One of the
buttons represents an old floppy disk and the other is a magnifying glass over a picture. The two
buttons are used to load a new image or save the displayed image (Figure 10).

Master Thesis by Justin Stein

24

Figure 10. Opened main menu

When selecting to load a new image, CrazZzy Filterz opens an outside application which is used
by the mobile device as its default camera gallery application. This application reveals all the
images stored on the device. Once the image is selected, the gallery application returns to the
main display screen of CrazZzy Filterz with that particular image modified by the current chosen
filter in the place of the previous CrazZzy Filterz’s default image (Figure 11).

Master Thesis by Justin Stein

25

Figure 11. Selection of an image

When the user selects to save the image from the menu, the image is saved to the same location
that the image originally came from. CrazZzy Filterz changes the name of the new image to save
the original image from being over-written by the new filtered image.

The All Filters Screen fades in to view when the user presses the middle button on the main
screen. This screen is populated with every different filter that has previously been loaded into
CrazZzy Filterz. The appearance of each filter is the displayed image modified by that filter
using the default values for the filter’s parameters. There is also a “Cancel” button located on the
bottom or right of screen. This button’s icon is a circle with an “X” cut out of it. When this
button is pressed, it returns the user back to the display screen without choosing a particular
filter, acting much like the mobile device’s back button does (Figure 12).

Master Thesis by Justin Stein

26

Figure 12. All Filter Screen

The menu is different on the All Filter Screen. There are also two buttons located on the menu
when it is activated but are for very different purposes (Figure 13). The first button is labeled
“Load a Filter” and is used to load a new filter in to CrazZzy Filterz from the mobile device.
That button generates a list of all the filters that are available to the application by searching for
any filters that are located in the Image Filters folder on the mobile device (Figure 14).

Master Thesis by Justin Stein

27

Figure 13. Application displaying the Filters Window Menu Options.

Master Thesis by Justin Stein

28

Figure 14. Loading a new filter

The second menu button is label “Delete a Filter” and is used to remove one of the filters that is
on the All Filter Screen. Once the button is pressed a small red “X” appears over every one of
the filters to indicate the ability to remove that filter from the application (Figure 15). Note:
Removing the filter this way does not remove the Filter File from the actual device. To cancel
this process is as simple as pressing the cancel button located to the bottom or right of the screen,
depending on the orientation of the device.

Master Thesis by Justin Stein

29

Figure 15. Deleting a filter

Once a filter is chosen, the All Filters Panel fades out to bring the user back to the main
application’s screen. The main display image has the new selected filter applied to it, and the
CrazZzy Filterz title is updated to reflect the applied filter’s name (Figure 16). The sliding
screen is also updated to reflect the new chosen filter.

Master Thesis by Justin Stein

30

Figure 16. Main displayed image with a filter applied to it

The Parameter Panel is the sliding screen that has been previously mentioned and it slides open
and close. The user pushes on the title tab of the panel and drags their finger to the opposite side
of the screen causing the panel to slide open or close. The panel contains the basic information
of the filter, a description along with the parameters of the filter. The parameters are contained
in a scrolling list that scrolls when the user slides his or her finger over it. Each parameter is
selectable by tapping it (Figure 17).

Master Thesis by Justin Stein

31

Figure 17. Parameter Panel showing the description along with the parameters

Once one of the parameters is chosen by being pressed, a pop-up screen appears with two
buttons arranged at the bottom or right. One of the buttons is labeled “Cancel” and returns the
user back to the parameters panel un-doing any changes that were made while the pop-up screen
was present. The other button is labeled “Done” and also returns the user back to the to the
parameters panel but sets that filter’s parameter with the edited new value. At the top of the pop-
up screen reads the name of the filter’s parameter in which the user has chosen. Positioned
below the name of the filter are a number of sliders ranging from 1 to 4. Each slider has a double
arrowed value indicator revealing the current value of the parameter. Above each slider, its
current value and data type are written out (Figure 18).

Master Thesis by Justin Stein

32

Figure 18. Pop up window used to modify a parameter of a filter.

The value for a specific parameter is set by dragging the double-headed arrow of one of the
sliders from one end to the other. As a parameter’s value is changed, the filter is updated and
reapplied to the image on the display screen, which is only slightly visible due to the slightly
transparent background color of the parameter panel. As the value is changing, an up-to-date
representation of the displayed image with the filter reapplied using the new value is shown in
red pop-up box above the parameter’s slider (Figure 19).

Master Thesis by Justin Stein

33

Figure 19. Change in value is reflected in a small pop-up above the slider

The user confirms the desirable values for the parameter and is returned to the application’s main
screen, where the displayed image reflects the new changes to the parameters of the filter.
CrazZzy Filterz achieves all of this with minimal sluggishness and wait times in application’s
responses thanks to the “tricks” and methods that were used in its development.

3.2 Look-up Table Filter
To allow the developer of a filter the option to run it upon the LUT of the image, CrazZzy Filterz
uses the Look-up Table Applying Filter, which is developed as a Pixel Bender Filter. CrazZzy
Filterz represents the LUT of the images as an image so that any Pixel Bender Filter could be
applied to it (Figure 20). This LUT image is used by the Look-up Table Applying Filter (LUT
Applying Filter) when it is applied to the original image.

Master Thesis by Justin Stein

34

Figure 20. The LUT Image

The LUT Image has a 256 by 1 pixel dimension. This is used by the LUT Applying Filter as a
reference table of the color intensities in which the image’s pixels will be mapped too. When
there is no change in the LUT image, then the image pixel’s intensities are equal to their column
location and the displayed image appears unaltered. This LUT image contains all the 256 shades
of black and white and the pixels are arranged by intensity shades from darker to lighter.

{	

	
 	
 	
 	
 input	
 image4	
 src;	

	
 	
 	
 	
 input	
 image4	
 lut;	

	
 	
 	
 	
 	

	
 	
 	
 	
 output	
 pixel4	
 result;	

	

void	
 evaluatePixel()	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 pixel4	
 value	
 =	
 sampleNearest(src,	
 outCoord());	

	
 	
 	
 	
 	
 	
 	
 	
 pixel1	
 alpha	
 =	
 pixel1(sampleNearest(lut,	
 float2(value.a	
 *	
 255.0,	
 0.0)).a);	

	
 	
 	
 	
 	
 	
 	
 	
 pixel1	
 red	
 =	
 pixel1(sampleNearest(lut,	
 float2(value.r	
 *	
 255.0,	
 0.0)).r);	

	
 	
 	
 	
 	
 	
 	
 	
 pixel1	
 green	
 =	
 pixel1(sampleNearest(lut,	
 float2(value.g	
 *	
 255.0,	
 0.0)).g);	

	
 	
 	
 	
 	
 	
 	
 	
 pixel1	
 blue	
 =	
 pixel1(sampleNearest(lut,	
 float2(value.b	
 *	
 255.0,	
 0.0)).b);	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 result	
 =	
 pixel4(red,	
 green,	
 blue,	
 alpha);	

	
 	
 	
 	
 }	

}	

LUT Applying Filter

The LUT Applying Filter (above) requires the LUT Image as input so that it can be used as a
database of the color intensities. The filter first takes a base image in which this filter will run on
and for each pixel changes the values of the red, green, and blue color intensities along with the
pixel’s alpha channel to the locations of the values located on the LUT Image. The new intensity
values of the displayed image are determined by taking the original images pixels’ intensities to
be used as the column locaters to retrieve the new intensities from the LUT Image.

Master Thesis by Justin Stein

35

To apply the LUT Applying Filter to a selected image, it requires CrazZzy Filterz to store the
LUT image and the selected image. The LUT Bitmap Class (below) applies the LUT Applying
Filter to the selected image. The LUTBitmap Class extends the Bitmap Class and the
_LUTFilter is the LUT Applying Filter Class representation. LUTBitmap requires that it be
created with at least the selected image by passing it in as the bitmapData parameter. The
bitmapData is passed to the Bitmap Class in which it extends to initialize it. The next parameter
could be used for the Look-up Table image and is called LUT. If LUTBitmap is passed the LUT
image then it initializes the LUT Applying Filter to be applied. LUTBitmap passes the LUT
image and the selected image to the LUT Applying Filter. LUTBitmap uses a ShaderJob Class
to run the LUT Applying Filter and sets the image of the LUTBitmap with the returned result.

[Embed	
 (
 source="res/LUTFilter.pbj",	
 mimeType="application/octet-­‐stream"	
)	
]	

	
 private	
 var	
 _LUTFilter:Class;	

	
 	
 	

public	
 function	
 LUTBitmap(
 bitmapData:BitmapData,	
 	

LUT:BitmapData	
 =	
 null,	

pixelSnapping:String	
 ="auto",	

	
 smoothing:Boolean	
 =	
 false)	
 {	

	

super(bitmapData.clone(),	
 pixelSnapping,	
 smoothing);	

	
 	
 	
 	

	
 if(LUT	
 !=	
 null	
 &&	
 LUT.width	
 ==	
 256	
 &&	
 LUT.height	
 ==	
 1)	
 {	

	
 	
 this._shader	
 =	
 new	
 Shader(new	
 this._LUTFilter()	
 as	
 ByteArray);	

	
 	
 this._shader.data.lut.input	
 =	
 LUT;	

	
 	
 this._shader.data.src.input	
 =	
 bitmapData;	

	
 	
 	

	
 	
 //	
 shader	
 jobs	
 	
 	
 	
 	

this._job	
 =	
 new	
 ShaderJob();	

//	
 ShaderJob	
 returns	
 to	
 this	
 object	

	
 	
 this._job.target	
 =	
 this.bitmapData;	
 	

//	
 The	
 Shader	
 assigned	
 to	
 this	
 job	

	
 	
 this._job.shader	
 =	
 _shader;	
 	

	
 	
 this._job.start(
 true	
);	

}	

	
 	

	

ActionScript 3 class used to ran the Pixel Bender LUT Applying
Filter on an image

To help better see the flow of how a filter would be applied to the LUT image and then have that
image be applied to the selected image please refer to Figure 21.

Master Thesis by Justin Stein

36

Figure 21. The Look-up Table Walkthrough

Master Thesis by Justin Stein

37

3.3 Resizing images using bilinear scaling
CrazZzy Filterz resizes the selected image once it is loaded in from the mobile device. The new
size is decided by the dimensions of the devices screen. The selected image has the Bilinear
Scaling Filter applied to it (below) with a scale that resizes the image to fit on the devices screen.
The Bilinear Scaling Filter calculates each pixels intensity value by taking the linear value of the
position of the new pixel.

	
 	
 	
 	
 parameter	
 float	
 scale	

	
 	
 	
 	
 <	

	
 	
 	
 	
 	
 	
 	
 	
 minValue:	
 0.0;	

	
 	
 	
 	
 	
 	
 	
 	
 maxValue:	
 1000.0;	
 	

	
 	
 	
 	
 	
 	
 	
 	
 defaultValue:	
 1.0;	

	
 	
 	
 	
 >;	

	
 	
 	
 	
 input	
 image4	
 src;	
 	

	
 	
 	
 	
 output	
 pixel4	
 dst;	

	

	
 	
 	
 	
 void	

	
 	
 	
 	
 evaluatePixel()	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 scale	
 should	
 be	
 Math.max(
 src.width	
 /	
 output.width,	
 src.height	
 /	
 output.height	
)	

	
 	
 	
 	
 	
 	
 	
 	
 dst	
 =	
 sampleLinear(
 src,	
 outCoord()	
 *	
 scale	
);	
 //	
 bilinear	
 scaling	

	
 	
 	
 	
 }	

	

The Pixel Filter used for Bilinear Scaling

CrazZzy Filterz resizes the image by calling the public static function resizeByPBJ (below)
which returns a new BitmapData with a size where it would fit in between the desiredWidth and
desiredHeight without changing the image’s dimensions ratio. The aspectRatio is calculated by
the width divided by the height of the input image. The factor is calculated by the finding the
largest number between the input image’s width divided by the desiredWidth and the input
image’s height divided by the desiredHeight. The new image’s size is determined by rather the
input image’s width is greater than the input image’s height. If that is true, then the new image’s
width will equal the desiredWidth and the image’s height will equal desiredWidth / aspectRatio,
but if it isn’t true, then the new image’s width will equal desiredHeight * aspectRatio and the
image’s height will equal the desiredHeight. Once the new size has been determined for the new
image then a ShaderJob is initialized to run the Bilinear Scaling Filter using the factor number
and the result is stored in the as the new sized image.

Master Thesis by Justin Stein

38

[Embed	
 (
 source="res/bilinearresample.pbj",	
 mimeType="application/octet-­‐stream"	
)	
]	

private	
 static	
 var	
 BilinearScaling:Class;	

	
 	
 	

//function	
 that	
 resizes	
 a	
 image	
 by	
 bilinear	
 interpolation	
 using	
 pixel	
 bender	
 	

public	
 static	
 function	
 resizeByPBJ(
 input:BitmapData,	
 desiredWidth:int,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 desiredHeight:int,	
 cleanup:Boolean	
 =	
 true	
):BitmapData	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 aspectRatio:Number	
 =	
 input.width	
 /	
 input.height;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 factor:Number	
 =	
 Math.max(
 input.width	
 /	
 desiredWidth,	
 input.height	
 /	
 desiredHeight	
);	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 create	
 and	
 configure	
 a	
 Shader	
 object	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 shader:Shader	
 =	
 new	
 Shader();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 instantiate	
 embedded	
 Pixel	
 Bender	
 bytecode	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shader.byteCode	
 =	
 new	
 EasyBitmapData.BilinearScaling();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 supply	
 the	
 shader	
 with	
 BitmapData	
 it	
 will	
 manipulate	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shader.data.src.input	
 =	
 input;	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shader.data.scale.value	
 =	
 [factor];	
 //entered	
 as	
 an	
 array	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 output:BitmapData;//	
 shader	
 will	
 return	
 its	
 data	
 (an	
 image)	
 to	
 this	
 bitmap	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 determine	
 output	
 bitmap	
 dimensions	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (
 input.width	
 >	
 input.height	
)?	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 output	
 =	
 new	
 BitmapData(
 desiredWidth,	
 desiredWidth	
 /	
 aspectRatio	
):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 output	
 =	
 new	
 BitmapData(
 desiredHeight	
 *	
 aspectRatio,	
 desiredHeight	
);	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 job:ShaderJob	
 =	
 new	
 ShaderJob();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 ShaderJob	
 returns	
 to	
 this	
 object	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 job.target	
 =	
 output;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 The	
 Shader	
 assigned	
 to	
 this	
 job	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 job.shader	
 =	
 shader;	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 job.start(
 true	
);//	
 runs	
 the	
 job	
 synchronously	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (
 cleanup	
)	
 input.dispose();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 output;	
 	

}	

	

ActionScript 3 function that resizes an image

Master Thesis by Justin Stein

39

3.4 Controlling the Orientation
CrazZzy Filterz controls its layout by calling the doLayout Function (below) every time there is
a screen resize. When a user rotates a device to change the orientation of the screen, the screen’s
width and height values are reversed and that fires off the Resize Event. Once that Event is fired
the doLayout method is called and depending on the largest value between the width and height
of the screen, objects on the screen are re-positioned.
When the doLayout Function is called the background is set to the stage size and the pop-up
screen used to modify the parameters of the filters along with the All Filter screen have their
layouts changed according to the orientation of the device. After that CrazZzy Filterz changes
the layout of the main screen. The three buttons of the main screen are repositioned. The
Parameter Panel and the menu are also repositioned.

Master Thesis by Justin Stein

40

private	
 function	
 doLayout(e:Event	
 =	
 null):void	

{	

	
 this._bg.width	
 =	
 this.stage.stageWidth;	

	
 this._bg.height	
 =	
 this.stage.stageHeight;	

	

	
 this._allFilters.layout(this.stage.stageWidth,	
 this.stage.stageHeight);	

	
 this._modifier.layout(this.stage.stageWidth,	
 this.stage.stageHeight);	

	

	
 switch(getOrientation())	

	
 {	

	
 	
 case	
 Orientation.PORTRAIT:	

	
 	
 	
 this._bg.height	
 -­‐=	
 50;	

	

	
 	
 	
 this._parameters.position	
 =	
 PanelPosition.BOTTOM;	

	
 	
 	
 this._menu.position	
 =	
 PanelPosition.TOP;	

	

	
 	
 	
 this._rotateCW.x	
 =	
 this._bg.width	
 *	
 .2	
 -­‐	
 this._rotateCW.width	
 *	
 .5;	

	
 	
 	
 this._rotateCW.y	
 =	
 this._bg.height	
 *	
 .9	
 -­‐	
 this._rotateCW.height	
 *	
 .5;	

	
 	
 	
 this._rotateCCW.x	
 =	
 this._bg.width	
 *	
 .8	
 -­‐	
 this._rotateCCW.width	
 *	
 .5;	

	
 	
 	
 this._rotateCCW.y	
 =	
 this._bg.height	
 *	
 .9	
 -­‐	
 this._rotateCCW.height	
 *	
 .5;	

	

	
 	
 	
 this._previewAll.x	
 =	
 this._bg.width	
 *	
 .5	
 -­‐	
 this._previewAll.width	
 *	
 .5;	

	
 	
 	
 this._previewAll.y	
 =	
 this._bg.height	
 *	
 .9	
 -­‐	
 this._previewAll.height	
 *	
 .5;	

	
 	
 break;	

	
 	
 case	
 Orientation.LANDSCAPE:	

	
 	
 	
 this._bg.width	
 -­‐=	
 50;	

	

	
 	
 	
 this._parameters.position	
 =	
 PanelPosition.RIGHT;	

	
 	
 	
 this._menu.position	
 =	
 PanelPosition.LEFT;	

	

	
 	
 	
 this._rotateCW.x	
 =	
 this._bg.width	
 *	
 .9	
 -­‐	
 this._rotateCW.width	
 *	
 .5;	

	
 	
 	
 this._rotateCW.y	
 =	
 this._bg.height	
 *	
 .2	
 -­‐	
 this._rotateCW.height	
 *	
 .5;	

	

	
 	
 	
 this._rotateCCW.x	
 =	
 this._bg.width	
 *	
 .9	
 -­‐	
 this._rotateCCW.width	
 *	
 .5;	

	
 	
 	
 this._rotateCCW.y	
 =	
 this._bg.height	
 *	
 .8	
 -­‐	
 this._rotateCCW.height	
 *	
 .5;	

	
 	
 	
 	
 	
 	

	
 	
 	
 this._previewAll.x	
 =	
 this._bg.width	
 *	
 .9	
 -­‐	
 this._previewAll.width	
 *	
 .5;	

	
 	
 	
 this._previewAll.y	
 =	
 this._bg.height	
 *	
 .5	
 -­‐	
 this._previewAll.height	
 *	
 .5;	

	
 	
 break;	

}	

}	

	

ActionScript 3 Function doLayout

Master Thesis by Justin Stein

41

3.5 Integration
CrazZzy Filterz uses a database and creates a local file on the mobile device as a place to put
new filters that the user will like to add to the application (below). CrazZzy Filterz first checks
to see if there is the Image Filters Folder on the device and create one if it doesn’t exist.
CrazZzy Filterz uses a SQL Database which holds the names of the loaded filters along with
their paths to load them into the application. This allows for the user to add any new filter that is
located in the folder and automatically loads the already saved filters that the user has already
added.
If CrazZzy Filterz is creating the Image Filters Folder then a set of pre-installed filters is copied
from the pre-installed folder which was included with the installation of CrazZzy Filterz to the
new Image Filters Folder.

public	
 function	
 FilterDB()	

{	

	
 	
 this._filterObjs	
 =	
 [];	

	
 	
 var	
 dbFile:File	
 =	
 new	
 File(this.DB_LOC);	

	
 	
 this._sqlConnection	
 =	
 new	
 SQLConnection();	

	
 	
 this._sqlConnection.open(dbFile);	

	
 	
 var	
 externalFile:File	
 =	
 File.documentsDirectory.resolvePath(this.FILE_LOC);	

	
 	
 selectItems(null);	

	
 	
 if	
 (!externalFile.exists)	

	
 	
 createExternalFile(externalFile);	

	
 }	

	

protected	
 function	
 createExternalFile(exFile:File):void	

	
 {	

	
 	
 var	
 preinstalledFile:File	
 =	
 new	
 File("app:/res/pre-­‐installed");	

	
 	
 preinstalledFile.copyTo(exFile);	

	
 	
 var	
 list:Array	
 =	
 exFile.getDirectoryListing();	

for	
 (var	
 i:uint	
 =	
 0;	
 i	
 <	
 list.length;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 if(!this.contains(list[i].url))	

	
 	
 	
 addNewFilterItem(String(list[i].name).split(".")[0],	
 list[i].url);	

	
 }	

Class and Method used to create the database

In addition CrazZzy Filterz is always awaiting certain events to happen. If any of these events
are fired, CrazZzy Filterz acts accordingly. When the back button on the device is pressed,
CrazZzy Filterz returns to its previous state and when the menu button on the device is pressed,
CrazZzy Filterz activates the menu panel.

Master Thesis by Justin Stein

42

Chapter 4: Experiments

4.1 Testing Environment
All testing and experimenting during my thesis was conducted on my mobile phone. The phone
is a Motorola Droid 2 running the Android 2.2 (Froyo) OS. It is rooted and has a TI OMAP
1GHz processor with dedicated GPU. The processor is over-clocked and running at 1.3GHz
along with 512 MB of RAM. The first thing that I tested was to ensure that a Pixel Bender filter
would run in ActionScript 3 on the mobile device. The results confirmed that I could continue to
develop CrazZzy Filterz in ActionScript 3.

4.2 Testing the different languages

Android	
 vs.	
 ActionScript

After I weighed my pros and cons on if I should attempt to build my application in the native
programming language of Android or in ActionScript 3.0, I ran a test to see how much of a speed
performance I would be giving up. I created a simple application written in Android that uses a
288 by 216 image and turns it pixels’ intensities inverted by a touch of a button. The time that it
takes for all the pixels in the 288 by 216 image to have their color intensity to be reversed was
recorded and displayed.

Master Thesis by Justin Stein

43

protected Bitmap invertRGB(Bitmap b){
 int picW = b.getWidth();
 int picH = b.getHeight();

 int[] pix = new int[picW * picH];
 b.getPixels(pix, 0, picW, 0, 0, picW, picH);

 for(int y = 0; y < picH; y++){
 for (int x = 0; x< picW;x++){
 int index = (y * (picW)) + x;
 int red = android.graphics.Color.red(pix[index]);
 int green = android.graphics.Color.green(pix[index]);
 int blue = (pix[index]&0xFF);

 int iRed = 255 - red;
 int iGreen = 255 - green;
 int iBlue = 255 - blue;

 pix[index] = android.graphics.Color.rgb(iRed,iGreen,iBlue);
 }
 }
 return Bitmap.createBitmap(pix, picW, picH, b.getConfig());
}	

Inverted Filter written in Android

The Inverted Filter (above) that is written in Android first creates a new bitmap by breaking up
each pixel data from the passed in bitmap into the three different color channels. Once the
channels are isolated, they are then subtracted from the maximum intensity of a color shade, 255.
The pixels are then used to populate the new returning bitmap.

I compared this Android Function to one that I created in Pixel Bender.

	
 	
 	
 input	
 image4	
 src;	

	
 	
 	
 output	
 pixel4	
 dst;	

	

	
 	
 	
 	
 void	
 evaluatePixel()	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 dst.rbg	
 =	
 1.	
 -­‐	
 sampleNearest(src,outCoord()).rbg;	

	
 	
 	
 	
 	
 	
 	
 	
 dst.a	
 =	
 sampleNearest(src,outCoord()).a;	

	
 	
 	
 	
 }	

}	

Inverted Filter written in Pixel Bender

The evaluatePixel Function of the Pixel Bender Filter (above) computes the value of each pixel
in a bitmap by substracting the intensity by 1. Pixel Bender already separates the color channels
of each pixel and represents each channel’s value as a number between 0 and 1.

Master Thesis by Justin Stein

44

I ran both filters 30 different times each. The results of the testing below shows the lapsed times
in milliseconds that both approaches produced while inverting the colors in the 288 by 216
image.
 Written language Lapse Time in milliseconds

Android 93 93 116 83 96

100 95 91 94 114

103 95 92 45 96

44 114 92 105 94

92 76 112 97 93

93 95 98 91 45

ActionScript 3 and
PixelBender

186 190 227 145 201

205 196 176 193 221

207 198 178 144 201

143 213 180 211 193

178 145 212 203 191

190 199 204 173 143

Figure 22. Data Chart: Lapse Times of Invert Filter – Android vs ActionScript 3

Master Thesis by Justin Stein

45

Figure 23. Graph: Lapsed Times of Invert Filter- Android vs. ActionScript

Each approach fluctuates within 85 milliseconds between their maximum and minimum times.
The average of the Android approach was 91.57 milliseconds and the average of ActionScript 3
approach was 188.2 milliseconds which is double that of the Android approach. This is a very
significant difference in value and meant that filters written in Pixel Bender and being used by
ActionScript 3 would run about 2 times slower than those filters that are written directly in
Android.

Master Thesis by Justin Stein

46

4.3 Testing Speed and Accuracy

To demonstrate the improved performance of the filters ran upon an actual full size image stored
on a mobile device and a resized image, I ran the Invert Filter 30 times on both forms of the
image. I ran the Invert Filter on the original size image 30 times and then I re-ran the Invert
Filter 30 more times on the resized dimensions. Images taken on my mobile device using the
5MP Camera creates images with dimensions of 2592 wide and 1456 high but the stage or screen
of the mobile device only has a dimension of 480 wide and 854 high. Within CrazZzy Filterz the
image is resized to a dimension of either 854 by 479 or 480 by 269 based upon the orientation of
the phone and image at the time that the image is loaded into CrazZzy FilterZ.

Master Thesis by Justin Stein

47

Image size Lapse Time in milliseconds

Original Size 2592
x 1456

8815 8643 8900 8652 8711

8658 8694 8622 8723 8936

8715 8653 8670 8645 8694

9725 8661 8653 8620 8659

8603 8687 8661 8589 8610

 8672 8628 8600 8610 8588

Resized to fit
screen 480 x 269

340 365 380 359 369

345 340 348 403 348

336 376 341 340 363

360 361 344 338 349

358 344 359 387 340

350 385 339 346 361

Figure 24. Data Chart: Lapse Times of Invert Filter – Original Sized vs. Resized

Figure 25. Graph: Lapse Times of Invert Filter – Original Sized vs. Resized

Master Thesis by Justin Stein

48

When the Invert filter ran on the full-sized image, the computing time that lapsed was an average
of 8709.9 milliseconds with a maximum lapsed time of 9725 milliseconds and a minimum lapsed
time of 8588 milliseconds. The data shows that when the filter ran on the resized image, that it
resulted in an average lapsed time of only 355.8 milliseconds with a maximum lapsed time of
403 milliseconds and a minimum lapsed time of 336 milliseconds. This data also shows that the
lapsed time of the original size has a fluctuation of 1137 milliseconds but on the resized image
the fluctuation is only 67 milliseconds.
To reveal the difference in image quality that the resized image has over the full size image, I
compared the two histograms of the same fixed area from both the images once they were
displayed onto the screen of the mobile device. A histogram is a graph of the total count of
pixels at each color intensity level. To compare both of the histograms, screenshots were taken
of the image displayed on my device, one when it was resized and one of the image left in its
original resolution. I continue by opening these images in to Adobe Photoshop and extracted the
histogram data from the same selected area of each image (Figure 26).

Figure 26. Picture Quality Test: Original Size vs. resized

The histogram from 118140 pixels of the full-sized image revealed a mean of 57.59, a median of
57 along with a standard deviation of 25.69. The histogram from the same fixed area of pixels as
the resized image revealed a mean of 57.02, median of 57 along with a standard deviation of
25.77. The graph below shows the histograms of the two images up to the 100 intensity mark to
show how similar they are.

Master Thesis by Justin Stein

49

Figure 27. Graph: Histogram Comparsion – Original Size vs. Resized

4.4 Using the LUT
To test the benefit of applying a filter upon the LUT of an image rather than the conventional
way of applying it directly upon the image content, I applied two very different filters upon both
the image and then again on its LUT and recorded the results. The two filters that were applied
were the Invert Filter which consists of only a two line algorithm and a much more complicated
Color Channel Curve Filter where the algorithm changes the intensity values of each color
channel according to a Cubic Spline Interpolation of four different points. Each filter was
applied 30 times upon a 480 by 269 image and then repeated but applied this time to the LUT of
the image.

When the Invert Filter ran directly on the bitmap of the image, the data shows a lapsed time that
has a range between a maximum of 403 and a minimum of 336 milliseconds, with an average of
355.8 milliseconds. When the Invert Filter ran on the LUT of the image, data shows an increase
in lapsed time. The lapsed times have a range between a maximum of 600 and a minimum of
524 milliseconds, with an average of 539.7 milliseconds.

The data taken when the Color Channel Curves Filter was applied shows two very different data
sets. When this filter ran directly upon the bitmap, the lapsed times have a range between a
maximum of 4315 and a minimum of 3826 milliseconds. The average lapsed time of this data
set is 3911.3 milliseconds. The data collected when this filter was run on the LUT, revealed
lapsed times that have a range between a maximum of 599 and a minimum of 531 milliseconds.
The average lapsed time of that data set is 548.53 milliseconds.

Master Thesis by Justin Stein

50

 Filter Applied On Lapse Time in milliseconds

 Invert Filter Bitmap 340 365 380 359 369

345 340 348 403 348

336 376 341 340 363

360 361 344 338 349

358 344 359 387 340

350 385 339 346 361

Invert Filter LUT 544 552 529 527 528

548 526 550 529 563

528 527 527 529 528

550 558 526 600 532

584 527 529 528 526

530 583 524 528 531

Figure 28. Data Chart: Invert Filter – Bitmap vs. LUT

Master Thesis by Justin Stein

51

Color Curves Filter
Bitmap

3851 3961 3876 3925 3896

3974 3932 3857 3924 3948

3892 4315 3865 3896 3852

3871 3859 3992 3959 3859

3916 3826 3885 3829 3994

3872 3874 3892 3843 3904

Color Curves Filter
LUT

562 553 533 537 532

560 531 553 534 533

554 538 599 534 568

534 535 556 533 547

537 550 547 533 546

550 584 555 594 534

Filter Applied On Lapse Time in milliseconds

Figure 29. Data Chart: Color Curves Filter – Bitmap vs. LUT

Figure 30. Data Graph: Invert and Color Curves Filters – Bitmap vs. LUT

Master Thesis by Justin Stein

52

Chapter 5: Analysis of Results

5.1 Native Android is faster than ActionScript 3.0
After performing the Android vs. ActionScript 3 Performance Test back in section 4.2, it was
apparently clear that it was going to be an uphill battle to create CrazZzy Filterz using
ActionScript 3. The data reveals that if CrazZzy FilterZ was developed directly in Android, that
it could possibly perform 2.055 times faster than being developed on Adobe AIR according to
the average lapsed time of 91.57 milliseconds recorded from the Android Application and the
average lapsed time of 188.2 milliseconds recorded from the ActionScript 3 written application.
Reviewing the data (Figure 22) shows that the Android Application ran the fastest lapsed time of
only 44 milliseconds while the Adobe AIR Application’s closes lapsed time is 143 milliseconds.
The Android Application demonstrates that it runs about 3.25 times faster than the Adobe AIR
Application when comparing both of the applications’ fastest lapsed times.
The range between the maximum and minimum lapsed times of the two approaches were similar
with the Android Application having a range difference of 99 milliseconds and the Adobe AIR
Application having a range difference of 111 milliseconds. This indicates that both approaches
will return consistent and predictable results.

5.2 Smaller is better
The data collected from the testing in section 4.3, Testing Speed and Accuracy, revealed that
when the filter was run on the full-sized image with dimensions of 2592 by 1456, that the
average lapsed time is 8709.9 milliseconds (Figure 24). A 2592 by 1456 image consists of
3773952 pixels and each pixel requires the filter’s algorithm to modify its intensity, so the
algorithm average lapsed time was .0023 milliseconds per pixel.
Looking at the lapsed times of the filter that ran on the resized 480 by 269 image (Figure 24),
shows an average lapsed time of 355.8 milliseconds. The averaged lapse time of performance on
the resized image is 24.48 times faster than compared to the full-size image. The resized image
consists of 129120 pixels which is 29.23 times smaller than that of the full-sized image. The
filter’s algorithm ran an average of .0028 milliseconds per pixel.

As expected the computing time per operation upon a pixel was roughly the same and the lapsed
times created by each image was in proportional to its size and number of pixels needing to be
modified.

Master Thesis by Justin Stein

53

The Quality Test of the full-size and resized image displayed on the mobile device provided an
expected conclusion also. Any and all devices that display an image to a screen of different
resolution must resize the image anyway to fit. The resized image should appear the same as a
full-size image that is resized by the device. When the two histograms are compared, they reveal
that they are nearly identical to each other (Figure 27).
A histogram is basically a bar graph representation of the total count of pixels with each different
intensity value. The histograms of the two images were created from the same section of the
images using the same amount of pixels (Figure 26). They showed that their means had a
difference of only .57. They also have a difference in the standard deviation of only .08. These
differences that are presented to the end user are only minor and nearly undetectable alternations
between the two images.

5.3 Using the Look-up Table
The data collected from the LUT Tests from section 4.4 revealed some very interesting findings.
When a filter is used on the LUT of an image, that filter runs only on an image with the
dimensions of 256 by 1. The LUT contains the 256 levels of black and white, which is used by
the LUT Applying filter to be applied directly on to the image. The lapsed times of the Invert
Filter running directly on the image indicates that it is quicker than when it is applied to the LUT
and then ran through the LUT Applying Filter (Figure 28).
The average lapsed time that the Invert Filter took to run directly on the image was 355.8
milliseconds but it took an average lapsed time of 539.7 milliseconds to run the filter upon the
LUT and then have the LUT applied to the image (Figure 28). When we analysis the amount of
time that the Invert Filter takes to ran per pixel, we see that the lapsed time of the operation

performed on each pixel is
269*460
8.355 which is about .0029 milliseconds. If the Invert Filter takes

a lapse time of .0029 milliseconds to run on a pixel then it only took about 256 * .0029 = .7424
milliseconds to run the Invert Filter on the LUT. The LUT Applying Filter must take 539.7 -

.7424 = 538.9576 milliseconds, which is about
269*460
9576.538 = .0044 milliseconds per pixel.

The Color Curves Filter produced an average lapsed time of 3911.3 milliseconds to run on the

image (Figure 29). The filter’s algorithm takes about
269*460
3.3911 = .0316 milliseconds to modify

a pixel. With that in mind, when that same filter is ran on the LUT of image with far less pixels,
the total lapsed time to run the Color Curve Filter will take .0316 * 256 = 8.0896 milliseconds.
Now add that to the average lapsed time of the LUT Applying Filter when applied to a 460 by
269 pixel image, 538.9576 milliseconds, the overall lapsed time to run the Color Curves Filter
becomes 538.9576 + 8.0896 = 547.0472 milliseconds.

In the case of the Color Curves Filter, it runs about 3911.3 – 547.0472 = 3364.2528 milliseconds
longer, when it is applied directly on the image verses using the image’s LUT. It is the opposite
case with the Invert Filter because it runs faster directly on the image rather than the LUT of the
image.

Master Thesis by Justin Stein

54

Chapter 6: Conclusions
The first conclusion that was formed from the building of this application was the fact that if
CrazZzy FilterZ was developed in Android rather than ActionScript 3 that it would ran a whole
lot faster. After such a conclusion is formed, one may be puzzled in the reasoning behind
continuing the development of the application in the slower language. The reasoning behind this
decision was due to the time restraints that were present during the development of the
application. To make use of the pre-populated library and community of Pixel Bender Filters
and developers, I would have had to re-develop that functionality in Android rather than use the
already developed functionality in Adobe AIR.

After the completion of CrazZzy Filterz I have concluded that by adding the ability to run any
given filter upon the LUT of an image and by resizing the images to maintainable sizes without
lowering the quality of the image when it is displayed upon the mobile device’s screen, has
proven that CrazZzy Filterz have achieved its goals that it were given to it at the start.

CrazZzy Filterz set out to become a counterpart mobile application of an application that is
currently used on a desktop that requires enormous amount of processing power to execute and
run. CrazZzy Filterz lowers the processing power that it requires to an acceptable level where it
can succeed on a mobile device and still accomplish it goals. When the application was tested by
a small group of end users, the feedback was overall pleasant with no mention of unacceptable
wait times to run any of the pre-installed filters or any unacceptable pixelizetion of the chosen
image in which to run any of the filters on.
Overall CrazZzy Filterz proves that a mobile device could be used as a platform for applications
that were previously thought not suitable such as a full functioning image filtering application.

Master Thesis by Justin Stein

55

Chapter 7: Future Work
In future work, I would like to develop this application as a native application written for both of
Android OS and Apples iOS. This will present great improvement in computing time when the
filter is ran. I believe that I could rewrite this application using the same tested methods that I
presented in this thesis and achieve a great improvement on the overall performance of the
application. Also by rewriting my application, I will open up the user group to the majority of
mobile users and remove the need for the AIR application to be installed on the device.

In Addition to the rewriting of the application, I will add more functionality. An additional
future functionality of CrazZzy Filterz will be the addition of layering the filters upon each other.
As of now the image can only have one filter applied to it at a time and when the user changes
the applied filter to a different one, the previous filter is removed from the image and the new
filter is than applied to the image.
Another enhancement that I will add to a future release will allow for the user to select the pixels
of the image that they would like the filter to be applied to rather than having the filter applied to
the whole image.

In a future release of CrazZzy Filterz, it will allow the users to sync each other’s filter libraries.
CrazZzy Filterz will discover itself on another’s mobile device and when instructed to by both
parties will save any filters that the other user has that they do not have already.
A final addiction to CrazZzy Filterz would be to have the decision to either apply the filter
directly to the image or the image’s LUT left up to CrazZzy Filterz. As of now, the developers
are in charge of deciding if it would be better to apply their filter to the LUT or not. I would like
to have CrazZzy Filterz test a new filter to found out if it is beneficial to apply the filter to LUT.
The test would take place on small sample image where the filter is applied first to the image and
then on the LUT. CrazZzy Filterz should then be able to conclude which approach is best for
that filter. One potential problem that CrazZzy Filterz would have to look out for is that to use
the method of applying the filter to the LUT requires that the filter must to be free of needing any
other pixel’s information, so there would have to be some build-in fail safes.

Master Thesis by Justin Stein

56

References

1. Rogers, Yvonne and Preece, Jennifer. John Wilsey & Sons. (2007) Interaction Design:

beyond human-computer interaction. 2nd Edition. West Sussex, England
2. Moock, Colin. O’Reilly Media. (2007) Essential ActionScript 3.0: ActionScript 3.0

Programming Fundamentals. 1st Edition. Sebastopol, CA
3. Dougherty, Geoff. Cambridge. (2009) Digital Image Processing for Medical Applications.

United Kingdom
4. Thanksmister, “AS3 Scrolling List for Android and iOS devices” (Oct 14 2010). Retrieved

2011, from http://www.thanksmister.com/index.php/archive/android-as3-scrolling-list/
5. Peter J. Ackla, “MATLAB array manipulation tips and tricks” (Oct 18 2003). Retrieved

2011, from http://home.online.no/~pjacklam/matlab/doc/mtt/doc/mtt.pdf
6. “Adobe AIR 3” (2011). Retrieved 2011, from http://www.adobe.com/products/air/
7. "Pixel Bender basics for Flash" (2011). Retrieved 2011, from

http://www.adobe.com/devnet/flash/articles/pixel_bender_basics.html
8. "Pixel Bender Technology Center" (2011). Retrieved 2011, from

http://www.adobe.com/devnet/pixelbender.html
9. “Fundamentals of Image Processing” by hany.farid@dartmouth.edu

http://www.cs.dartmouth.edu/~farid
10. Anusha Sethuraman, "US Smartphone Statistics – Q1 2011 Overview" (May 6, 2011).

Retrieved 2011, from http://www.smartonline.com/mobile-2/us-smartphone-statistics-q1-
2011-overview/

11. "Nearest-neighbor interpolation" (Oct 9, 2011). Retrieved 2011, from
http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

12. "Interpolation" (Oct 16, 2011). Retrieved 2011, from
http://en.wikipedia.org/wiki/Interpolation

13. "Bilinear interpolation" (AUG 10, 2011). Retrieved 2011, from
http://en.wikipedia.org/wiki/Bilinear_interpolation

14. "Bicubic interpolation" (June 19, 2011). Retrieved 2011, from
http://en.wikipedia.org/wiki/Bicubic_interpolation

15. "Lookup table" (Sep 21, 2011). Retrieved 2011, from
http://en.wikipedia.org/wiki/Lookup_table

